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INTRODUCTION

Let X be a Banach space. A convex set C in X is said to be
approximatively compact if for any y # X and any sequence [xn] in C
which is minimizing for y, i.e., &y&xn& � d( y, C) :=inf [&y&x& : x # C],
it follows that [xn] has a Cauchy subsequence. X is said to be approxi-
matively compact if any closed convex set in X is approximatively compact
(see [1]).

We discuss in this paper the approximative compactness in Orlicz func-
tion spaces LM and Orlicz sequence spaces l M equipped with either the
Luxemburg norm or the Orlicz norm. We prove that l M is approximatively
compact if and only if it is reflexive and that LM is approximatively com-
pact if and only if it is reflexive and rotund (independently of the norm).
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Let R and N stand for the sets of reals and of natural numbers, respec-
tively and let M and M* be a couple of complementary convex and even
N-functions on R (see [8] for the definition). Let L0 denote the space of
equivalence classes of all real measurable functions corresponding to the
Lebesgue measure space (0, 7, m), where 0/R and m(0)<�. Denote by
c0 the space of all sequences with limit equal to zero. We define

p(x)=\M (x)=|
0

M(x(t)) dt and \(x)=\M (x)= :
�

i=1

M(x(i))

on L0 and c0 , respectively. Orlicz function space LM and Orlicz sequence
space l M are defined by

LM=[x # L0 : \M (*x)<� for some *>0],

l M=[x # c0 : \M (*x)<� for some *>0].

It is well known (see [2, 8�12, 15]) that LM and lM are Banach spaces if
they are equipped with the Luxemburg norm

&x&=&x&M=inf[c>0: \M (x�c)�1]

or the Amemiya norm (which is equal to the Orlicz norm; see [2, 8, 12])

&x&0=&x&0
M= inf

k>0

1
k

[1+\M (kx)].

We know (see [12, 15]) that if we define k*x=inf [k>0 : \M*( p(kx))�1]
and kx**=sup [k>0 : \M*( p(kx))�1], where p denotes the right deriva-
tive of M, then

&x&0=
1
k

[1+\M (kx)]

for any k # [k*x , kx**].
We say that M satisfies the 22 -condition at � (resp. at 0), in symbols

M # 2�
2 (resp. M # 20

2) if lim sup M(2u)�M(u)<� as u � � (resp. u � 0).
M is said to be strictly convex if for all u, v # R with u{v it holds that
M((u+v)�2)<[M(u)+M(v)]�2.

It is known that uniformly rotund Banach spaces are approximatively
compact (see [1]). Recall that a Banach space X is said to be uniformly
rotund if for all sequences [xn] and [ yn] in the unit ball B(X) of X it holds
that &xn& yn & � 0, whenever &xn+ yn & � 2.
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RESULTS

We will prove first a lemma from which it follows that fully k-convex
Banach spaces are approximatively compact. Recall that a Banach space X
is said to be fully k-convex (k # N, k�2) if any sequence [xn] in X such
that &�k

i=1 xni
�k& � 1 as ni � � for i=1, ..., k is a Cauchy sequence. The

notation &�k
i=1 xni

�k& � 1 as ni � � for i=1, ..., k means that for any
= # (0, 1) there is m # N such that &�k

i=1 xni
�k&>1&= whenever n1 , ..., nk

�m.

Lemma 1. Let X be a Banach space. If there exists a natural number
k�2 such that any sequence [xn] such that &�k

i=1 xni
�k& � 1 as ni � �

(i=1, ..., k) has a Cauchy subsequence, then X is approximatively compact.

Proof. Let C be a closed convex set in X and x # X"C. Let [xn] be a
minimizing sequence for x, i.e., &xn&x& � d(x, C)=: d. Denote for con-
venience un=x&xn and *n=&un&&1. Note that x&C is a convex set,
whence �k

i=1 uni
�k # x&C. We have

1�" :
k

i=1

*ni
uni

�k "=
1
k " :

k

i=1

uni
�d+ :

k

i=1

(*ni
&d &1) uni "

�
1

kd " :
k

i=1

uni "&
1
k " :

k

i=1

(*ni
&d&1) uni "

=
1
d " :

k

i=1

uni
�k "&

1
k " :

k

i=1

(*ni
&d &1) uni " .

Note that &�k
i=1 uni

�k&�d and ni � � implies *ni
� d &1(i=1, ..., k).

Therefore

" :
k

i=1

*ni
uni

�k "� 1 as n i � � (i=1, ..., k).

So, the assumptions yield that [*n un] has a Cauchy subsequence. It follows
from the inequality

&un&um&�
1

*n
&*n un&*mum &+ } *m

*n
&1 } &um&

that [un] has a Cauchy subsequence, too. This completes the proof.

Corollary 1. Every Banach space X which is fully k-convex for some
natural k�2 is approximatively compact.
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Now, we will present criteria for approximative compactness of Orlicz
spaces.

Theorem 1. The space (l M, & &) is approximatively compact if and only
if M # 20

2 and M* # 20
2 .

Proof. It is well known that l M is reflexive if and only if M # 20
2 and

M* # 20
2 (see [9, 11, 12]). Moreover, approximatively compact Banach

spaces are reflexive (see [1]). So, the necessity is obvious. Now, we prove
the sufficiency. By Lemma 1, we need only prove that any [xn] in l M with
&xm+xn & � 2 as m, n � � has a Cauchy subsequence. First we prove that
for any =>0 there exists j= # N such that ��

j= j=
M(xn( j))<= for all n # N.

If not, there exist =0>0 and two sequences [ jk] and [nk] of natural num-
bers satisfying

:
�

j= jk

M(xnk
( j)�=0 . (V)

Since M* # 20
2 , there exists _>0 such that (see [2, 6, 15])

M(u�2)�2&1(1&_) M(u) for all u # [0, M&1(1)].

Moreover, M # 20
2 implies (see [2, 7, 15]) that for any =>0 there exists

'>0 such that for all x, y # l M with \M (x)�2 and \M ( y)�', we have
|\(x+ y)&\(x)|<=. Without loss of generality, we may assume that
\M (xn)�2 for all n # N. For any fixed m # N, let j0 be sufficiently large,
satisfying ��

j= j0
M(xm( j)�2)<'. Then for jk� j0 , we have

\M ((xnk
+xm)�2)= :

jk&1

j=1

M((xnk
( j)+xm( j))�2)

+ :
�

j= jk

M((xnk
( j)+xm( j))�2)

� :
jk&1

j=1

2&1[M(xnk
( j))+M(xm( j))]

+ :
�

j= jk

M((xnk
( j)+xm( j))�2)

�2&1\(xm)+2&1 :
jk&1

j=1

M(xnk
( j))

+2&1(1&_) :
�

j= jk

M((xnk
( j))+=

�2&1\M (xm)+2&1\M (xnk
)&2&1_=0+=.
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Passing to the limit as k, m � �, we get 1�1&2&1_=0+=. Since =>0 is
arbitrary, this is a contradiction, which proves that condition (V) holds
true.

Since M # 20
2 and M* # 20

2 , lM is reflexive. Hence [xn] has a sub-
sequence, denoted again by [xn], which is weakly convergent to some x
with &x&�2. This yields that xn(i) � x(i) as n � � for all i # N. For any
=>0 there exist j= , n= # N such that

:
�

j= j=

M(xn( j))<=, :
�

j= j=

M(x( j))<=, :
j=&1

j=1

M((xn( j)&x( j))�2)<=

for n�n= . Thus

\M ((xn&x)�2)� :
j=&1

j=1

M((xn( j)&x( j ))�2)

+2&1 :
�

j= j=

(M(xn( j))+M(x( j))<2=

for n�n= , which obviously yields that [xn] is a Cauchy sequence. The
proof is complete.

Let p& and p denote the left and the right derivative of M, respectively.

Lemma 2. Let M # 2�
2 , x # LM, and &x&=1. Then f produces a support

functional at x if and only if f is of the form

f (t)=w(t)�(1+\M*(w)),

where w is a 7-measurable function such that p&(x(t))�w(t)�\(x(t)) for
m-a.e. t # 0.

Proof. See [3, Theorem 1.3; 14, Theorem 2.1].

Theorem 2. The space (LM, & &) is approximatively compact if and only
if M # 2�

2 , M # 2�
2 , and M is strictly convex on R.

Proof. We know that (LM, & &) is fully k-convex (k # N, kz2) if and
only if M # 2�

2 , M* # 2�
2 , and M is strictly convex on R (see [2, 4]).

Hence, by Corollary 1, the sufficiency is obvious. Now, we prove the
necessity. Since the approximative compactness implies reflexivity, we need
only prove that M is strictly convex on R. If not, M is affine on some
interval [a, b] with 0<a<b<�. We can choose a measurable closed set
E/0 and a measurable set F/0"E, both of positive measure, such that

2&1[M(a)+M(b)] m(E)+M(c) m(F )=1
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for some c>0. We can divide E into two measurable subsets E 1
1 and E 1

2

such that m(E 1
1)=m(E 1

2) and m(E 1
1 & E 1

2)=<, i.e., E 1
1 and E 1

2 are disjoint
up to a set of measure zero. Put

x1=a/E1
1+b/E2

1+c/F .

Repeating this procedure, we obtain a devision of E, E=�2n

i=1E n
i , where

E n
i (i=1, ..., 2n) are pairwise disjoint sets (up to a set of measure zero) and

for any fixed n they have the same measure, and E n
i =E n+1

2i&1 _ E n+1
2i

(i=1, ..., 2n). Put

xn=a/�k=1
2n&1

En
2k&1

+b/�k=1
2n&1

En
2k

+c/F .

Let C=conv[xn]. We know by Lemma 2 that there is a common
regular support functional f for all xn (n=1, 2, ...), i.e., a function f of the
form from Lemma 2 such that f # LM*, & f &0

M*=1, and (xn , f ) =
�0 f (t) xn(t) dt=1 for n=1, 2, ... . Let x # conv[xn], l # N, a j>0 for j=
1, ..., l, � l

j=1 a j=1, and x=� l
j=1 ajxnj

. Then (x, f )=� l
j=1 a j(xnj

, f )=1.
This implies that &x&=1. Thus &x&=1 for all x # C. Note that

d(0, C)=&xn&=1 (n=1, 2, ...)

and \M(xm&xn)=2&1M(b&a) m(E). By M # 2�
2 this yields that there

exists _>0 such that &xm&xn &z_ for all m, n # N, which means that C
is not approximatively compact. This finishes the proof.

To give a characterization of approximative compactness for LM

equipped with the Orlicz norm, we need the following lemma.

Lemma 3. Let M # 2�
2 and x # S(LM, & &0). Then y # LM* is a support

functional at x if and only if:

(i) \M*( y)=1,

(ii) p&(kx(t))Z y(t)Zp(kx(t)) for m-a.e. t # 0, where k is an
arbitrary fixed number from the interval [k*x , kx**].

Proof. See [3], Theorem 1.7.

Theorem 3. The space (LM, & &0 is approximatively compact if and only
if M # 2�

2 , M* # 2�
2 , and M is strictly convex on R.

Proof. We know that (LM, & &0) is fully k-convex if and only if it is
reflexive and rotund, i.e., M # 2�

2 , M* # 2�
2 , and M is strictly convex on R
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(see [13]). Similarly as in Theorem 2, we need only show that the
approximative compactness of (LM, & &0) implies that M is strictly convex
on R. If not, there exists an interval [a, b] with 0<a<b<� such that
p&(a)= p&(b)= p(a)= p(b). It is easy to see that there exists a measurable
set E/0 of positive measure such that M*( p(a)) m(E)<1. Moreover, we
can choose c>0 and a measurable set F/0"E such that

M*( p(a)) m(E)+M*( p(c)) m(F )=1.

Denote

k=1+2&1[M(a)+M(b)] m(E)+M(c) m(F ).

Similarly as in the proof of Theorem 2, there exists a decomposition of E,
E=�2n

i=1 E n
i , where E n

i are pairwise disjoint and of the same measure for
any fixed n # N and E n

i =E n+1
2i&1 _ E n+1

2i (i=1, ..., 2n). Put

xn=[a/�k=1
2n&1

E n
2k&1

+b/�k=1
2n&1

E n
2k

+c/F ]�k.

One can easily verify that

\M*( p(kxn))=2&1[M*( p(a))+M*( p(b))] m(E)+M*( p(c)) m(F )=1.

We have that k # [k*xn
, k**xn

] for any n # N, whence

&xn&=(1+\M(kxn))�k=
1
k

[1+2&1[M(a)+M(b)] m(E)+M(c) mF]=1

for any n # N. Let C=conv[xn]. By Lemma 3, we know that there exists
a function f # LM* which generates a common support functional for all xn

(n=1, 2, ...). Thus, &x&=1 for all x # C. Note that

d(0, C)=&xn&=1 (n=1, 2, ...)

and \M(xm&xn)=2&1M((b&a)�k) m(E). Therefore, there exists _>0
such that &xm&xn&za for all n # N, which means that C is not
approximatively compact. The proof is completed.

Remark 1. Analogous results hold true for the Lebesgue measure space
(0, 7, m) with 0/R and m(0)=�. The only difference is that in place of
M # 2�

2 and M* # 2�
2 we must assume that M # 22 and M* # 22 , where

M # 22 means that there exists a positive constant K such that the
inequality M(2u)ZKM(u) holds for all u # R.
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